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VECTORIAL REFLECTANCE O F  TBE EXPLORER I X  SATELLITE MATERIAL 

By Gerald M. Keating and James A. Mullins 
Langley Research Center 

SUMMARY 

Reflectance measurements w e r e  made a t  d i f f e ren t  azimuth and colat i tude 
angles r e l a t i v e  t o  f l a t  samples of t he  aluminum and white epoxy paint  surfaces 
used on the Explorer IX satel l i te  by means of an adapted monoplanar goniopho- 
tometer. Contour char t s  of t he  ref lectance from these samples w e r e  obtained 
from t h e  r e s u l t s  of these measurements. Reflectance r e l a t i v e  t o  mutually per- 
pendicular axes w a s  obtained by graphical integrat ion of t he  contour char ts .  
The vec to r i a l  summation of the  ref lectance w a s  thus  obtained. The aluminum 
sample w a s  found t o  be e s sen t i a l ly  a specular r e f l ec to r  and the  white epoxy 
paint  sample w a s  found t o  be e s sen t i a l ly  a d i f fuse  r e f l ec to r .  

INTRODUCTION 

The Fxplorer I X  sa te l l i te  (refs. 1 and 2) i s  used t o  i n f e r  atmospheric 
densi ty  a t  perigee a l t i t u d e s  from the  energy decay of t h e  satel l i te .  
energy changes of t h e  s a t e l l i t e  due t o  so la r  radiat ion forces  through most of 
i t s  l i f e t ime  have been of the  same order of magnitude as the energy decay due 
t o  aerodynamic drag, it i s  e s sen t i a l  f o r  accurate determination of densi ty  t h a t  
the  so la r  radiat ion force upon the  s a t e l l i t e  be known. 

Since the  

The radiat ion force upon the  s a t e l l i t e  could have been determined by m e a s -  
ur ing t h e  forces  on i r r ad ia t ed  s a t e l l i t e  mater ia l  by means of a tors ion  balance. 
Unfortunately, no instrument of suf f ic ien t  precision w a s  avai lable;  thus,  a 
study of t h e  r e f l ec t ive  cha rac t e r i s t i c s  of the  material, from which t h e  radia- 
t i o n  force may be e a s i l y  deduced w a s  required. 

The determination of t h e  r a t e  of momentum t r ans fe r  o r  force due t o  inc i -  
dence of p a r a l l e l  photons i s  qui te  straightforward. 
force produced by t h e  r e f l ec t ion  of photons i s  not so le ly  dependent on the  
f r ac t ion  of photons re f lec ted  o r  hemispherical ref lectance,  but i n  addition, on 
the  d i rec t ions  a t  which photons a re  re f lec ted .  
r e f l ec t ion  of light i s  dependent on the  vec to r i a l  summation of t he  re f lec ted  
l ight  o r  vec to r i a l  reflectance.  

(See ref. 3 . )  The react ion 

Therefore, the force due t o  

The r e s u l t s  of a l i t e r a t u r e  survey did not y ie ld  a previous determination 
of ref lectance as a function of azimuth and colat i tude f o r  Explorer I X  mater ia l  
nor w e r e  equations avai lable  which accurately predict  the amount of l i g h t  
re f lec ted  i n  each direct ion.  It w a s ,  therefore,  considered necessary t o  obtain 



measurements of t h e  s p a t i a l  d i s t r ibu t ion  of re f lec ted  l i g h t  from samples of t he  
Explorer I X  material at d i f f e ren t  angles of incidence so t h a t  momentum exchange 
due t o  re f lec t ion  could be more accurately evaluated. These measurements were 
made under contract  t o  the  National Aeronautics and Space Administration by the  
National Bureau of Standards (NBS). 
t h a t  NBS w a s  requested t o  make and presents  t h e  analysis  made a t  t h e  NASA 
Langley Research Center. 

T h i s  report  describes the  measurements 

SYMBOLS 

A 

C 

f 

F” 
H 

hv 

i 

J 

k’ 
+ 
L 

’S,2.5 

area, cm2 

speed of l i g h t  i n  vacuum, cm (sec)”  

foca l  length,  cm 

force,  dynes 

incident power per  un i t  area normal t o  d i rec t ion  of propagation, 
e rg  (cm) -2( sec) -1 

energy of a photon (Planck’s constant t i m e s  t he  frequency of t he  
photon), ergs  

angle of incidence, deg 

u n i t  vector along pos i t ive  X - a x i s  of f igure  1 

un i t  vector along pos i t ive  Y-axis of f igu re  1 

radiant  i n t ens i ty  of re f lec ted  l ight i n  d i rec t ion  @,$ (eq. ( 8 ) ) ,  
ergs ( steradian) ’l( sec)” 

radiant  i n t ens i ty  of re f lec ted  l i g h t ,  ergs  (steradian)’’( sec)” 

un i t  vector along pos i t ive  Z-ax i s  of f igure  1 

un i t  vector denoting d i rec t ion  of photon 

in tegers  

vec to r i a l  summation of  radiant  power, ergs  (sec)-’ 

magnitude of p a r a l l e l  incident power, ergs  (see)” 

radiant  power re f lec ted  within 2.5’ of angle of specular re f lec t ion ,  
ergs  ( sec) - l  
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vec to r i a l  ref lectance (eq. ( 3 ) )  

ref lectance per un i t  so l id  angle normal t o  sample, (steradian)-’ 

ref lectance per un i t  so i i a  angle i n  d i rec t ion  $,~r (eq. ( E ) ) ,  
( steradian) -1 

u n i t  vector i n  d i rec t ion  of specular re f lec t ion ,  u n i t l e s s  

coordinate axes 

angle measured clockwise i n  plane of measurement ( t h a t  plane defined 
by op t i ca l  axes of l i g h t  source and photometer) from l i g h t  source 
t o  photometer ( f i g .  5 ) ,  deg 

angle measured clockwise i n  plane of measurement ( t h a t  plane defined 
by op t i ca l  axes of l i g h t  source and photometer) from l igh t  source 
t o  project ion of normd t o  sample ( f i g .  6) ,  deg 

angle measured clockwise i n  plane of measurement ( t h a t  plane defined 
by op t i ca l  axes of l i g h t  source and photometer) from projection of 
normal t o  sample t o  photometer ( a r c  MP of f i g .  6 ) ,  deg 

angle measured clockwise i n  plane of measurement ( t h a t  plane defined 
by op t i ca l  axes of l i g h t  source and photometer) from l i g h t  source 
t o  r igh t  horizontal  axis of ro ta t ion  of sample ( f i g .  3 ) ,  deg 

tilt angle of sample plane ( f i g .  3 ) ,  deg 

angle between plane of measurement (that plane defined by o p t i c a l  
axes of l i g h t  source and photometer) and X,Z plane of f igure  1 
( f i g .  6 )  , de@; 

angle of vec to r i a l  re f lec t ion ,  measured i n  X,Z plane of f igure  1 
from -Z toward -X, deg 

co la t i tude  angle measured from normal t o  sample ( f i g .  I), deg 

azimuth angle measured as shown i n  f igure  1, deg 

so l id  angle, steradian 

Subscripts: 

D diffused component of l i g h t  

i summation index 

I incident  light 

R r e f l ec t ed  light 
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specular component of l i g h t  

at angle # 
normal t o  sample 

THEORY O F  RADIATION FORCE 

The coordinate system used i n  this discussion i s  i l l u s t r a t e d  i n  f igure 1. 
The X,Y plane i s  i n  the  plane of the sample, with the  X - a x i s  along the  projec- 
t i o n  of t h e  incident ray on the  sample plane. The sample i s  placed on an 
opaque sample holder, which permits i l lumination of only one side of the sample. 
The -Z-axis  i s  normal t o  the illuminated s ide of the  sample. The X,Z plane 
contains the incident  ray and i s  cal led the  incident plane. 

Some angles per t inent  t o  the discussion a r e  shown i n  f igure  1. The angle 
of incidence i s  defined as the  angle between the  normal t o  the  mater ia l  and the 
incident ray. Posi t ions a t  which measurements a r e  made a r e  expressed i n  terms 
of t h e  colat i tude angle # measured from the  -Z axis, and the  azimuth angle q,  
measured from the  plane of incidence i n  a clockwise sense about the  -Z axis  t o  
the  plane containing $. 

+ 
If hvi/c i s  the  magnitude of momentum of the  i t h  photon and L i  i s  a 

u n i t  vector i n  t h e  d i rec t ion  of propagation of t he  i t h  photon, the  summation of 
momenta of n photons may be expressed as 

Consider a flux of n photons per un i t  time incident  upon f l a t  surface A .  Then 
the  momentum flux or  force ?I upon surface A due t o  incidence of photons, 
excluding the  addi t ional  momentum t r ans fe r  due t o  r e f l ec t ion ,  i s  

* 1 ”  $ = I. C hviLi PI 
i =1 

3 
where PI i s  the  vec to r i a l  summation of incident radiant  power. 

Similarly,  i f  m photons per un i t  time are  re f lec ted  from surface A, the  

FR upon the  surface due only t o  t h e  r e f l ec t ion  of photons i s  
4 

reaction force 

ff 
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-+ 
where PR i s  t h e  vec to r i a l  summation of re f lec ted  radiant power. 

3 
The t o t a l  radiat ion force F act ing on surface A, thermal emission being 

neglected, i s  given by the  vec to r i a l  summation of forces  due t o  incidence and 
re f lec t ion .  

It i s  convenient t o  determine radiat ion force i n  terms of t h e  vec to r i a l  re f lec-  
tance of a material r which i s  assumed t o  be dependent on the d i rec t ion  but  
not on the magnitude of the  incident radiant power. Vectorial  ref lectance i s  
defined f o r  p a r a l l e l  incident  l i g h t  and i s  t h e  vec to r i a l  summation of re f lec ted  
radiant power divided by the magnitude of the  incident radiant power. 

+ 

3 

4 'R r = -  
'I 

where PI i s  the  magnitude of p a r a l l e l  incident radiant  power. I n  the  case 
under consideration where a l l  incident power i s  pa ra l l e l ,  the radiat ion force 
on area A i s  

3 PI -+ 

F = -(% C - 2) 
+ 

where LI i s  a un i t  vector i n  the  d i rec t ion  of the  incident l i g h t .  PI may be 
measured i n  terms of the  incident power per un i t  area H and 
ured i n  terms of t h e  radiant  i n t ens i ty  of re f lec ted  l i g h t  i n  each direct ion a#,$). I f  p a r a l l e l  l i g h t  of measured power per un i t  area H i s  incident at  
angle of incidence i on area A, then 

? may be m e a s -  

PI = H(cos i ) A  

+ 
L e t  
re f lec ted  i n  d i rec t ion  #,$. 

J($,$) represent the  measured re f lec ted  power per  u n i t  so l id  angle 

where dQ i s  a d i f f e r e n t i a l  so l id  angle. 
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i n  l i g h t  of t h i s  def in i t ion ,  

-j, + 
Define mutually perpendicular un i t  vectors  ?, J ,  and k along the  posi t ive 
X, Y, and Z axes, respect ively,  shown i n  f igure  1. Then 

. Subst i tut ing equation (11) i n to  equation (10) y ie lds  

3+ 
If symmetry with respect  t o  the  i , k  plane i s  assumed, 

Final ly ,  

3 3 3 
% = - ( s in  i)i + (cos i ) k  
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APPARATUS 

Test Sample s 

The Ekplorer IX s a t e l l i t e  ( f i g .  2) i s  e s sen t i a l ly  a spherical  balloon made 
of a four-ply laminate of a l t e rna te  l aye r s  of 0.5-mil (0.00127 cm) 1145 aluminum 
and p l a s t i c  f i l m  with the  aluminum surface on the outs ide of t he  balloon. Two- 
inch-diameter (5.08 cm) dots  of white epoxy paint uniformly cover 18 percent of 
the 12-foot-diameter (365.76 cm) aluminum surface. Therefore, samples of t he  
four-ply laminate and of t h e  four-ply laminate coated with white epoxy paint  
were prepared. The paint ,  a white epoxy enamel, w a s  sprayed onto the aluminum 
samples t o  the consistency used on Explorer IX and then cured by baking f o r  
1 hour at 300' F (422O K) . 

The aluminum and white paint  samples were glued t o  f l a t  aluminum-alloy 
p l a t e s  5 inches x 5 inches X 1/4 inch (12.70 cm x 12.70 cm X 0.635 cm) i n  vacuo 
t o  minimize the  number of dust  p a r t i c l e s  being trapped beneath the  samples. 

Goniophotometer 

The apparatus used t o  measure the d i s t r ibu t ion  of re f lec ted  l i g h t  w a s  the  
NBS manual monoplane goniophotometer. 
posed of th ree  par t s :  the  source uni t ,  the  sample housing, and t h e  co l lec tor  
un i t .  
source through a focusing l ens  whose foca l  point i s  a t  a var iable  source aper- 
t u r e  (2 .5  mm i n  diameter) which i s  a l so  a t  the  foca l  point of t he  collimating 
l e n s  ( f  = 114 mm) . 
resu l tan t  beam of p a r a l l e l  l i g h t ,  l imited by a c i rcu lar  aperture diaphragm t o  
3 centimeters i n  diameter, i s  re f lec ted  from the  sample. I n  order t o  measure 
the i n t e n s i t y  of l i g h t  at a given angle of re f lec t ion ,  a co l lec tor  lens  
(f = 536 mm) which sees the  e n t i r e  illuminated portion of the sample focuses 
a l l  l i g h t  re f lec ted  a t  a given angle upon a receiver aperture.  The re f lec ted  
l i g h t  passing through the  receiver  aperture i s  then measured by means of a 
photometer un i t .  The s m a l l  so l id  angle subtended by the  receiver  aperture i s  
the  receiver  aperture a rea  divided by the  square of the foca l  length of t he  
co l lec tor  lens .  

(See r e f .  4.)  The instrument i s  com- 

It may be seen i n  f igu re  3 t h a t  l i g h t  passes from a 2,854O K tungsten 

The l i g h t  passes through the  coll imating l ens  and the 

The photometer u n i t  used throughout t h e  measurements employed an a-c modu- 
l a t e d  blue sens i t ive  s-4 phototube and an a-c amplifier.  
found t o  have a l i n e a r  response over the  range of values measured. 

The photometer w a s  

A photograph of the apparatus i s  shown i n  f igure  4. The co l lec tor  un i t  
and specimen holder are f r e e  t o  r o t a t e  about a v e r t i c a l  axis passing through 
t h e  center  of t he  sample. 
t he  specimen holder may r o t a t e  S O o .  Normally, a monoplanar goniophotometer 
can measure ref lectance only i n  the  plane defined by the  o p t i c a l  ax i s  of the 
source un i t  and a normal passing through t h e  center of  the  sample. I n  order 
t ha t  ref lectances could be measured i n  any plane, the  sample housing w a s  modi- 
f i ed  so tha t  t h e  specimen holder could ro t a t e  S O o  about a horizontal  a x i s  i n  
the  plane of the  sample passing through i t s  center.  

The co l lec tor  un i t  i s  l imited t o  330° ro ta t ion  and 
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For the  d i f fuse ly  re f lec ted  light, the  in t ens i ty  w a s  low enough t o  allow 
the phototube t o  be placed d i r e c t l y  behind an 8-millimeter-diameter receiver 
aperture.  It w a s  assumed f o r  t he  measurements made that the  reflectance per 
un i t  so l id  angle measured w a s  t h e  ref lectance per u n i t  so l id  angle a t  t h e  center 
of t h e  so l id  angle subtended. 

I n  order t o  measure the  in t ens i ty  of l ight  i n  t h e  v i c i n i t y  of specular 
re f lec t ion ,  the  phototube could no longer be placed d i r e c t l y  behind the  receiver 
aperture and w a s ,  therefore ,  placed on the  s ide of an 8-inch-diameter (20.32 cm) 
Bas04 coated diffusing sphere shown i n  f igure  4. 

The l i g h t  i n  t h e  v i c i n i t y  of specular re f lec t ion  w a s  measured by centering 
the receiver aperture on the  specular peak. Six c i r cu la r  aper tures  subtending 
half-angles of 0 . 5 O ,  0.75', lo, 1.5', 2 O ,  and 2 . 5 O  were used. 
measurements with c i r cu la r  receiver  aper tures  of diPferent diameters, the d i f -  
ferences i n  the  power received could be used t o  determine the var ia t ion  of 
radiant i n t ens i ty  i n  t h e  immediate region of specular re f lec t ion .  

By making such 

The photometer w a s  cal ibrated f o r  diffuse ref lectance measurements by 
measuring l i g h t  re f lec ted  normally from a magnesium oxide plaque illuminated 
with l i g h t  incident at  43'. 
amount of l i g h t  i s  re f lec ted  as from a pe r fec t ly  re f lec t ing ,  per fec t ly  d i f -  
fusing r e f l ec to r .  Therefore, t he  theo re t i ca l  reading f o r  t he  incident beam 
could be deduced. The photometer w a s  cal ibrated for specular ref lectance meas- 
urements by taking a d i r e c t  reading of t h e  incident beam. 

A t  t h i s  pa r t i cu la r  angle of re f lec t ion ,  t he  s a m e  

Determination of Representative Angles of 

Incidence and Reflection 

I n  order t o  minimize the  number of measurements necessary t o  determine the  
r e f l ec t ive  propert ies  of t h e  Explorer I X  material, representative angles of 
incidence and r e f l ec t ion  were chosen. 

The projected a rea  of t h e  spherical  satell i te was divided in to  f i v e  equal 

A c i r c l e  w a s  chosen f o r  each projected annular 
concentric areas about t h e  sa te l l i t e -sun  l i n e  upon each of which an equal amount 
of so la r  energy i s  incident .  
area such t h a t  half  of t he  a rea  and thus  one-half the  so la r  energy f e l l  on each 
s ide of the  c i r c l e .  The angles of incidence corresponding t o  the  r a d i i  of 
these c i r c l e s  w e r e  chosen as those t o  be investigated.  It follows t h a t  the 
angles of incidence i are given by t h e  equation 
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It w a s  assumed that t h e  d i f fuse  re f lec t ion  pa t t e rn  follows the  Lambert 
cosine l a w  

Jg = Jn cos # 

where Jn and J# are re f lec ted  i n t e n s i t i e s  normal t o  the  sample and a t  
angle #, respectively.  

An imaginary hemisphere w a s  constructed about an illuminated elemental 
area. Four concentric zones were constructed on the  hemisphere such t h a t  each 
zone contained one-quarter of t he  d i f fuse ly  ref lected light i f  a Lambertian 
d is t r ibu t ion  i s  assumed. A colat i tude angle w a s  chosen f o r  each zone such 
t h a t  half the  l i g h t  re f lec ted  through each zone w a s  above and half  below the  
colat i tude angle. The colat i tude angles g may be wr i t ten  as 

T o  minimize the  number of measurements, it w a s  assumed t h a t  the  re f lec t ion  
of L i g h t  w a s  symmetrical about the  plane defined by t h e  incident ray and the  
normal t o  the  material. Therefore, azimuth angles $ were selected only 
between Oo t o  180°. 
ref lectance w a s  assumed t o  be independent of azimuth angle. Therefore, each 
concentric area w a s  divided i n t o  four segments between $ = 0' and lbo, and 
each segment w a s  of t he  same angular extent i n  azimuth. An average azimuth 
angle w a s  chosen midway between t h e  extremities of each segment. Therefore, 
azimuth angles were chosen as follows: 

I n  accordance with the  Lambert cosine l a w ,  the  d i f fuse  

All combinations of incl inat ion,  azimuth angle, and colat i tude angle d is -  
cussed w e r e  invest igated t o  determine t h e  d i f fuse  r e f l ec t ion  propert ies  of t he  
aluminum and w h i t e  epoxy pa in t  and fo r  each material consti tuted 80 measurements. 

I n  order t o  inves t iga te  the  specular re f lec t ion  from each sample, t h e  area 
i n  the  immediate v i c i n i t y  of the  angle of specular r e f l ec t ion  w a s  investigated.  
The angle of specular r e f l ec t ion  i s  a t  a colat i tude angle equivalent t o  t h e  
angle of incidence and at an azimuth angle of 180~ .  

I n  order t o  inves t iga te  the  t r ans i t i on  region between specular and d i f fuse  
re f lec t ion ,  measurements w e r e  made i n  the  near v i c i n i t y  of specular re f lec t ion  
along t h e  plane defined by t h e  incident  ray  and the  normal t o  the m a t e r i a l ,  and 
including the specularly re f lec ted  ray.  
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Apparatus Se t t ings  

Apparatus se t t i ngs  of t he  angles a, p, and y may be calculated so t h a t  
t he  sample i s  properly oriented r e l a t ive  t o  the  l i g h t  source and photometer f o r  
the  required angles of i, $, and +. 

Shown i n  f igu re  5 i s  a schematic diagram of the  apparatus se t t ings  of the 
goniophotometer. 
the plane of measurement. The angle a i s  measured clockwise from t h e  op t i ca l  
a x i s  of the l i g h t  source t o  the  o p t i c a l  axis of the  photometer. The angle p 
i s  measured clockwise i n  the  plane of measurement from the op t i ca l  ax is  of the  
l i g h t  source t o  the  r igh t  horizontal  axis of ro ta t ion  of the  sample holder. I n  
order t h a t  ref lectances may be measured outside of t h e  plane defined by t h e  
op t i ca l  ax is  of t he  l i g h t  source and the  normal t o  the  material ,  an adaption 
w a s  made t o  the  instrument such t h a t  the  samp,le could be t i l t e d  r e l a t i v e  t o  the  
v e r t i c a l  axis of ro ta t ion .  The tilt angle 4 i s  measured from the  v e r t i c a l  
a x i s  of ro ta t ion  t o  the  axis i n  the  plane of t h e  sample which i s  normal t o  the 
horizontal  axis of ro ta t ion .  I n  order t h a t  the  sample s ide of the  specimen 
plane may be seen simultaneously by the  l i g h t  source and photometer, and since 
0 I 6 180°, 

The op t i ca l  axes of the  l i g h t  source and photometer define 

l 8 O 0  5 p 5 3600 

o 5 u 5 180° 

O l Y  5 90° 

Figure 6 i s  a schematic diagram of t h e  l i g h t  source L and photometer P 
r e l a t i v e  t o  the  sample plane X,Y. Angles a, %, and y correspond, respec- 
t i ve ly ,  t o  a rc s  LP, LM, and NM, which are  a l l  port ions of great  c i r c l e s  on a 
hemisphere constructed about the center of the  sample, denoted by point 0. 
Angles a and 7 have been previously described i n  f igure  5.  The angle % 
i s  measured clockwise r e l a t ive  t o  -Z, the  normal t o  the material, from the  
op t i ca l  axis of t he  l i g h t  source OL t o  OM, the  project ion of the  normal t o  the  
mateqial on the plane of measurement. It may be seen i n  f igure  6 t h a t  

The angle a i s  determined from the oblique spherical  t r i ang le  LPN. By 
the  l a w  of cosines, 

cos a, = cos i cos QI + sin i s i n  # cos ( 2 3 )  

10 
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Therefore, 

a, = a rc  cos(cos i cos # + s i n  i s i n  $ cos q)  

where from equation (20) 

The angle y may be determined from the r igh t  spherical  t r i ang le  LMN as 
follows : 

s i n  y = s in  q s i n  i (25 )  

The angle q may be determined from the  oblique spherical  t r i ang le  LPN. By 
the  l a w  of sines,  

s i n  q s i n  $ 
c#=G 

Subs t i tu t ing  equation (26) i n t o  equation (25)  and solving f o r  y ,  

(sin q s in  # s i n  i 
s i n  a 

y = a r c  s i n  

where from equation (21) 

The angle + may be determined from the  right spherical  t r i ang le  LMN as  
follows : 

cos i = cos c[n cos y ( 28) 

and 

cos i 
cos y 

cos = - (29) 

11 



Since equation (29) y ie lds  two values of a, between -5c/2 and ~ / 2 ,  
fur ther  calculat ions must be made i n  order t o  determine a, uniquely. 

Let  

a = & n + a '  (30) 

where a' i s  defined t o  be t h e  a rc  MP. From the  r igh t  spherical  t r i ang le  MPN, 

cos Q, = cos a' cos y ( 31) 

and 

cos # a' = a rc  cos 
cos y 

Equation (32) y ie lds  two values of a' between - ~ / 2  and z/2. 

Although a, and a' given by equations (29) and (32 )  are double-valued, 
only one combination of values w i l l  s a t i s f y  equation (30)  and 
determined from equation (22) . p can then be 

ANALYSI s 

The measured values of ref lectance i n  the  plane of incidence and i n  planes 
perpendicular t o  the  sample displaced by 22.5' and 6 7 . 5 O  from the  plane of inc i -  
dence fo r  both the  white paint  and aluminum samples along with contour p l o t s  
obtained by crossplot t ing and f a i r i n g  between the  measured values a re  presented 
i n  f igures  7 t o  26 f o r  angles of incidence of 18.4O, 33.2O, 45.0°, $ . 8 O ,  and 

71.6'. The planar ref lectance data  a re  presented as a r a t i o  of f l J  ') (desig- 
Rn 3 

on f i g s .  and t h e  contour p l o t s  a r e  presented i n  terms of R(fl,@) ) nated - 
Rn 

(designated R ) .  The measured values of Rn p lo t ted  against  angle of incidence 

a r e  presented i n  f igure  27. The data  were then evaluated f o r  r by l e t t i n g  

rs 
ref lec t ion  and rD be t h e  vec to r i a l  ref lectance of the remaining l i g h t .  Then 

3 

3 be the vec to r i a l  ref lectance within a cone of 2.5' of t h e  angle of specular 
3 
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where 

It was assumed 
pa ra l l e l .  The term 

R(@,Jr) dropping t o  
A 

t h a t  t h e  light i n  the  2.5O half-angle cones i s  e s sen t i a l ly  
+ 
rD i s  evaluated by graphically in tegra t ing  equation (12), 

-3 
zero a t  an angle of 2.5' from S, and the  integrat ion f o r  

rb being carr ied out i n  two s teps .  F i r s t ,  ??(Q(,Jr)sin2@ and $@,$)sin @ cos @ 
w e r e  graphically integrated with respect t o  @ f o r  constant values of Jr.  
In t eg ra l s  could be immediately obtained from the measured values f o r  
22.3O, 67.5O, ii2.5O, i 5 7 . 5 O ,  and 180° and additional i n t eg ra l s  were determined 
from the  contour p lo ts .  The in t eg ra l s  of @, multiplied by cos Jr f o r  the  

$ = Oo, 

3 
i 'component, were p lo t ted  against  Jr and graphically integrated a second t i m e ,  
t o  obtain the  components of rD along the  X- and Z-axes.  By summing the  com- 

ponents of rD and rS along t h e  X- and Z-axes, t he  d i rec t ion  9 and the  mag- 

nitude 121 of r were obtained. 

+ 
3 3 

+ 

RESULTS AND DISCUSSION 

Shown i n  f igure  27 i s  the magnitude of ref lectance per un i t  so l id  angle 
normal t o  the  surface Rn as a function of angle of incidence i f o r  t he  alum- 
inum and white paint  samples. A s  may be seen, Rn decreases more rapidly a t  
low angles o f  incidence f o r  aluminum but decreases more rapidly a t  high angles 
of incidence f o r  white epoxy pa in t .  For both aluminum and w h i t e  paint ,  t he  
t o t a l  d i f fuse  re f lec t ion  decreased with angle of incidence. 

Shown i n  f igure  7 a re  values of a @ , J r ) / R n  a s  a function of @ f o r  planes 
perpendicular t o  the  white epoxy paint  sample f o r  an angle of incidence of 18.4O. 
The dotted l i n e s  show t h e  r e f l ec t ion  pa t te rn  of a d i f fuse  r e f l ec to r  following 
t h e  Lambert cosine l a w  (en. (16)) .  Figure 7(a) shows values of 2 $ , J r ) / R n  i n  
t he  incident plane which passes through 
t i o n  i s  the  plane containing t h e  incident ray and a normal t o  the  sample. The 
polar-log p lo t  shows data  points  obtained from both specular and d i f fuse  meas- 
urements. Specular measurements a r e  those i n  which the  Bas04 coated diffusing 
sphere w a s  used. Diffuse measurements are those i n  which the  phototube w a s  
mounted d i r e c t l y  behind the receiver  aperture.  A s  may be seen, the value 
obtained at the  angle of specular r e f l ec t ion  (@ = 1 8 . 4 O )  i s  orders of magnitude 
grea te r  than the  value at the  normal which i s  defined as 1. 

I n  f igure  7(b) ,  $$,Jr)/Rn i s  shown a s  a function of @ f o r  a plane per- 
pendicular t o  the  sample but  22.5O away from t h e  plane of incidence. 
of symmetry with respect t o  the incident plane, measurements at  azimuth Jr are  

Jr = Oo and Jr = 180°, which by def ini-  

Because 



equal t o  measurements a t  azimuth -$. The polar p l o t  shows only points  obtained 

from di f fuse  ref lectance measurements. Note t h e  high value of ?(@,$)/Rn a t  
$ = 21.70 which i s  i n  the  near v i c i n i t y  of the  specular peak. 

The measurement plane ( f i g .  7(c)) i s  67.5O from the plane of incidence. 
Here, t he  data  points  more closely follow the  Lambert cosine l a w .  

-a 
I n  f igure  8 are  shown contours of R(#,$) plo t ted  as a function of @ 

and $. This p lo t  w a s  obtained by cross p lo t t i ng  the  curves of f igure  7. The 
general  r e f l ec t ion  pa t te rn  may be seen at once. The c i r cu la r  contours show 
ref lectance e s sen t i a l ly  independent of azimuth angle $, except i n  the region 
of specular r e f l ec t ion  where a peak occurs. Although the  peak i s  very high, it 
occurs over a s m a l l  so l id  angle. 

Figures 9 and 10 a re  s i m i l a r  t o  f igures  7 and 8 except t h a t  they a r e  
obtained f o r  an angle of incidence of 33.2'. By comparing f igures  8, 10, 12, 
14, and 16, it i s  seen t h a t  t h e  specular peak has increased i n  angular extent 
and lnagnitude with an increase i n  the angle of incidence. 

A s  i n  the  contours f o r  w h i t e  pa in t ,  the  aluminum contours ( f ig s .  18, 20, 
22, 24, and 26) show regions of intense re f lec ted  light occurring about the 
angle of specular re f lec t ion .  However, although there  i s  d i f fuse ly  re f lec ted  
l i g h t ,  there  i s  no discernible  Lambertian pa t te rn  f o r  aluminum. There appear 
two ridges of i n t e n s i t y  i n  each aluminum contour: one along the  plane of inc i -  
dence, and a c i r cu la r  r idge occurring at Furthermore, it w a s  noticed 
tha t  a v i s i b l e  cross pa t te rn  occurred when l ight re f lec ted  from the sample vas 
projected on a screen. 
that t h i s  e f f ec t  w a s  probably due t o  the cross grain of the mater ia l .  

@ = i. 

It was suggested by t h e  National Bureau of Standards 

Values of Z($,$)/Rn a r e  given as a function of @ f o r  the aluminum 
sample f o r  an angle of 18A0 i n  f igure  l7(a).  
of the  d i f fuse  r e f l ec to r  i s  no longer noticeable.  

q@,$)/Rn 
t h a t  a m a x i m u m  measured value occurs i n  each plane at t h e  point c losest  t o  
# = i. 
occur i n  the v i c i n i t y  of t he  normal t o  the  sample where peaks occur f o r  
Lambertian d i f fuse  re f lec t ion .  

The c i r cu la r  r e f l ec t ion  pa t te rn  
Scanning a l l  the data of 

i n  the  (b) and ( c )  parts of f igu res  17, 19, 21, 23, and 25 indicates  

A s  a result, the  curves were drawn with peaks at $d = i. Other peaks 

I n  f igu re  28 i s  shown a p lo t  of the  t o t a l  ref lectance within 2.5' of the  
angle of specular r e f l ec t ion  f o r  aluminum and white epoxy paint .  A s  may be 
seen, specular r e f l ec t ion  f o r  both aluminum and white epoxy paint  increases 
with angle of incidence. The curve f o r  white paint  increases slope more rapidly 
as grazing incidence i s  approached. 

I n  f igure  29 i s  shown a p lo t  of ref lectance p e r  un i t  so l id  angle at the  
inf in i tes imal  so l id  angle subtended at  t h e  specular peak. These extrapolated 
values were obtained by p lo t t i ng  ref lectance per u n i t  so l id  angle as a f'unction 
of aperture angle subtended f o r  f i v e  concentric aper tures  about t he  specular 
peak. The ref lectance per un i t  so l id  angle a t  the  specular peak increases more 
rap id ly  with angle of incidence than does 9 rS of the  previous f igure .  
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+ I n  f igure  30 i s  p lo t ted  r, t o t a l  vec to r i a l  reflectance,  i n  terms of the  
magnitude and d i rec t ion  as a f inc t ion  of t he  angle of incidence f o r  aluminum 
and white epoxy paint .  The magnitude of vec tor ia l  ref lectance increases with 
angle of incidence a f t e r  33.2O f o r  aluminum, but remains e s sen t f a l ly  constant 
fo r  white paint .  The d i rec t ion  of vec to r i a l  reflectance f o r  the  aluminum 
sample i s  never greater  than lo from the  direct ion of specular re f lec t ion .  
low angles of incidence, the  vec to r i a l  reflectance of white epoxy paint  i s  prac- 
t i c a l l y  normal t o  the  surface. 

For 

The e r r o r s  due t o  measurement of IGl a re  estimated t o  be l e s s  than 

5 percent. The e r ro r s  i n  l?Dl due t o  measurement and in tegra t ion  a re  e s t i -  
mated t o  be l e s s  than 1 percent because of the cancellation of random measure- 
ment e r rors .  The d i rec t ions  of rS and rD are  accurate t o  within 10 minutes 

of a r c  and therefore  the  inaccuracy i n  the d i rec t ion  of i s  primarily due t o  
t h e  inaccuracy i n  IF’sl. 
l e s s  than 5 percent f o r  121. 

+ + 
3 r 

+ -3 Adding Zs and rD t o  obtain r y ie lds  e r ro r s  of 

CONCLUSIONS 

Based on the  data  obtained with the  Explorer IX s a t e l l i t e  material ,  the  
following conclusions can be drawn: 

1. For both t h e  aluminum,and t h e  white epoxy paint  samples, d i f fuse  re f lec-  
t i o n  decreases with angle of incidence and specular r e f l ec t ion  increases with 
angle of incidence. 

2. The white epoxy paint  sample i s  e s sen t i a l ly  a d i f fuse  r e f l ec to r  with a 
superimposed specular peak. 

3 .  The aluminum sample i s  e s sen t i a l ly  a specular r e f l ec to r  with a s m a l l  
d i f fuse  component. 

4. Vectorial  ref lectance of t h e  aluminum sample increases with angle of 
incidence and i s  within lo of the  d i rec t ion  of specular r e f l ec t ion .  

5.  Vectorid- ref lectance of white paint var ies  slowly with angle of inc i -  
dence over the range measured. 
vec to r i a l  ref lectance i s  near ly  normal t o  the  surface.  

A t  low angles of incidence, t he  d i rec t ion  of 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Stat ion,  Hampton, Va. ,  April  20, 1964. 
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Figure 1.- Figure illustrating coordinate system. 
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Figure 3.-  Schematic diagram of goniophotometer. 



L- 64 -3058 Figure 4. - Photograph of goniophotometer. 
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-X 

Y 

Figure 6.- Schematic diagram of light source and photometer r e l a t ive  t o  the  sample plane. 
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R/Rn 

(a) Reflectance in plane of incidence. 

(b) Reflectance in plane displaced 22.5O from plane of incidence. 

R/R, 

(c) Reflectance in plane displaced 6 7 . 5 O  from plane of incidence. 

Figure 7.- Planar reflectance of white paint as a function of $ for i = 18.4'. 
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Figure 8.- Contour p l o t  of ref lectance of white pa in t  f o r  i = 18.4O. 
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R/R. 

(a) Reflectance i n  plane of incidence. 

(b) Reflectance i n  plane displaced 2 2 . 5 O  from plane of incidence. 
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( c )  Reflectance i n  plane displaced 67.50 from plane of incidence. 

Figure 9.- Planar reflectance of white paint as a function of fl for i = 33.2'. 
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Figure 10.- Contour p lo t  of ref lectance of white paint  f o r  i = ~ 3 . 2 ~ .  
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R / R n  

(a) Reflectance i n  plane of incidence. 

75 
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R/R.  

(b) Reflectance i n  plane displaced 22.5' from plane of incidence. 

a 

# = o s  

1.0 .75  .50  .25 0 .25 .50  .75  1.0 

R/R, 

(c)  Reflectance i n  plane displaced 67.5O from plane of incidence. 

Figure 11.- Planar ref lectance of w h i t e  pa in t  as a function of @ f o r  i = 45.0'. 
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Figure 12.- Contour plot of reflectance of w h i t e  paint for  i = 45.0°. 
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R/R, 

(a) Reflectance i n  plane of incidence. 

75 
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R/R, 

(b) Reflectance i n  plane displaced 2 2 . 5 O  from plane of incidence. 

so-  
1.0 .15 .50 .25 0 .25 .50 .15 1.0 

( c )  Reflectance i n  plane displaced 6 7 . 5 O  from plane of incidence. 

Figure 13.- Planar ref lectance of w h l t e  pa in t  as a function of $ for i = 56.8'. 
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Figure 14.- Contour p lo t  of reflectance of white paint for i = 56.8'. 



R/R, 

( a )  Reflectance i n  plane of incidence. 

R/R, 

(b) Reflectance i n  plane displaced 22.5' from plane of incidence. 

I 

R/R,  

(c )  Reflectance i n  plane displaced 67.50 from plane of incidence. 

Figure 15.- Planar reflectance of white paint as a function of @ for i = TL.6'. 
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R/R. 

(a) Reflectance i n  plane of incidence. 

+= 22.5" +=-157.5'- 
y:.22.50 1 .  $= 151.5' 
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90 
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R/R. 

(b) Reflectance i n  plane displaced 2 2 . 5 O  from plane of incidence. 

( c )  Reflectance i n  plane displaced 67.5' from plane of incidence. 

Figure 17.- Planar reflectance of aluminum a5 a f'unction of $ f o r  i = 18.4'. 
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Figure 18.- Contour plot of reflectance of aluminum for i = 18.4'. 
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( a )  Reflectance i n  plane of incidence. 

(b) Reflectance in plane displaced 22.5' from plane of incidence. 

( c )  Reflectance i n  plane displaced 67.5' from plane of incidence. 

Figure 19.- Planar reflectance of aluminum as a function of $ f o r  i = 33.2'. 
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Figure 20.- Contour p l o t  of ref lectance of aluminum for i = 33.2O. 
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R/R,  

(a)  Reflectance i n  plane of incidence. 

R/R, 

(b) Reflectance i n  plane displaced 22.5' from plane of incidence. 

I): 67.50 *=-112.5'- 
*;.s7.5- I I)' 112.50 

# = O m  

4.0 3.0 2.0  1.0 0 1.0 2.0 3.0 4.0 

R/R. 

( c )  Reflectance i n  plane displaced 67.5O from plane of incidence. 

Figure 21.- Planar ref lectance of aluminum as a function of $ for i = 45.0°. 
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Figure 22.- Contour p lo t  of reflectance of aluminum for i = 45.0'. 
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R/R, 

(a) Reflectance i n  plane of incidence. 

, io* 

4.0 3.0 2.0 1.0 0 1.0 2.0 3.0 4.0 

R/R, 

(b) Reflectance i n  plane displaced 22.5' from plane of  incidence. 

(c)  Reflectance i n  plane displaced 67.5O from plane of incidence. 

Figure 23.- Planar reflectance of aluminum as a function of # f o r  i = 56.8'. 
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Figure 24.- Contour p l o t  of reflectance of aluminum for i = 56.8O. 
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R/R,  

(a) Reflectance in plane of incidence. 

R/R. 

(b) Reflectance i n  plane displaced 22.5' from plane of incidence. 

R/R, 

( c )  Reflectance i n  plane displaced 67.5' from plane of incidence. 

Figure 25.- Planar ref lectance of aluminum as a function of # f o r  i = 71.6'. 
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Figure 26.- Contour p lo t  of ref lectance of aluminum f o r  1. = p.6'. 
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Figure 27.- Normal reflectance of white paint and aluminum as a function of angle of incidence. 
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Figure 28.- Total reflectance within 2.5O of angle of specular r e f l ec t ion  as a function of 
angle of incidence. 
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Figure 29.- Reflectance per un i t  so l id  angle at angle of specular ref lect ion as a function of angle of incidence. 
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(b) White epoxy pa in t .  

Figure 30.- Vectorial  reflectance of aluminum and white epoxy paint samples as  a function of 
angle of incidence. 
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